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1. Introduction

Many theorems in statistics and econometrics assume that a distribution of a random
variable has a finite first, second or other moment. For example, Kolmogorov’s law of
large numbers requires the existence of a first finite moment. Lyapunov’s central limit
theorem assumes that a sample is drawn from a distribution with a finite second moment.
There is, therefore, the need for a test to verify these assumptions.

In this paper a bootstrap method is applied to test the hypothesis of the existence
of finite moments. Our test is primarily designed to verify the hypothesis that a first
finite moment exists; however, it can also be used to verify if other moments are finite
by raising the sample data to the corresponding power.

The Hill estimator (Hill (1975))! is the method most commonly used to make an
inference regarding the heaviness of the tails. The method is as follows: Pareto-type tails
are assumed, then parameters are estimated. Next, the hypothesis for the corresponding
parameter is tested. However, it is not always clear how many observations should be
treated as tails, since too many observations produce a large bias and too few observations
a large variance. Methods devised to resolve this problem have been presented in a vast
literature. Hall (1981), Beirlant et al. (1996), Danielson et al. (2001) and many others
have tried to determine an optimal number of observations to be used for the estimation
of the tail index. Resnick and Starica (1997), and Martins et al. (2004) calculated the
tail index averaging the Hill estimators. However, the fact that all these tests rely on
a specific assumption about tail distribution remains a major unresolved problem. This
may produce misleading results when the underlying distribution has a different form.

Another relevant paper is that of Bertail et al. (2001), who not only studied the es-
timation of distributions of diverging statistics using sub-samples, but also provided an
alternative method to estimate the tail index. Although their paper applied sub-sampling
to obtain an inference about the heaviness of the tails, the principal problems remained
unsolved, as a rather restrictive regularity of the tails is assumed, and testing for the
existence of moments is indirect: the conclusion was derived from having checked their
hypothesis about the parameter of a specific functional form.

Mandelbrot (1963) proposed another frequently used testing method (see, for example,
R. Cont (2001) to verify the existence of finite moments. The idea of the test is that the
graph of the moment of interest as a function of time (or number of observations) tends
to converge to the theoretical moment - if the moment exists. If the moment does not
exist, its behavior is unstable. While this method is quite intuitive, it is informal, as the
acceptance or rejection of the hypothesis depends on the intuition of the researcher, who
may be relying on personal experience or other external factors.

Our test aims to resolve several of these problems. The hypothesis that a finite moment
exists is checked directly and simply. The researcher need not estimate any parameters,
nor take any additional steps to calculate test statistics. Furthermore, consistency does
not depend on a specific functional form of the tail. Although some tail regularity is
assumed in order to show the consistency of the test, these assumptions are quite incon-
sequential. However, the choice of sub-sample size and one additional parameter poses a
similar question to that of the Hill estimator, i.e., choosing the number of observations
treated as a tail.

Monte-Carlo simulations show that the test performs rather well for a large number of
distributions. In borderline cases, such that a finite EX does not exist, but EX ¢ < oo,

L Alternative estimators are discussed in detail by L. de Haan and L. Peng (1998).



November 14, 2012

12:29 Journal of Nonparametric Statistics Main*Document

Journal of Nonparametric Statistics 3

for a small positive €, the test is not very powerful, but still outperforms the Hill estimator.

In the following section the basic framework is introduced and the test is formulated.
In the third section test consistency is shown. The forth section presents Monte-Carlo
simulations and compares the test with the Hill estimator.

2. The test

Our testing method is designed to verify the existence of the first moment. A researcher
wishing to check for the existence of other moments may apply the test for X?, where p
is the moment of interest.

Let sample (X7, Xo, ..., X},) be a random sample independently drawn from distribution
F with a support D. For simplicity it will be assumed that X; can take positive values
only, hence, D C Ry. Fn(z) is an estimate of F, Fp(z) = Y1 1(X; < x)/n. The
assumption that X; is positive is not very restrictive because it is always possible to use
an absolute value. Alternatively the hypothesis of finite mean can be checked for positive
and negative values separately. Let (X i1 Xpgs o X ,’C‘m) be a sub-sample of X randomly

drawn from F,,. There are M sub-samples and the subscript k, £ = 1...M, refers to an
index of a sub-sample.

Define
1 n
=1
1 m
:U';kn,k = Z Xl:z
i=1
Hypothesis:

- Hy: distribution F has a finite first moment.
- Hy: F does not have a finite first moment.

Test:

(1) Choose a significance level o > 0.

(2) Choose a bootstrap sample size m, m — oo as n — oo, m = o(n).!
(3) Draw M sub-samples from F,.

(4) Calculate the p-value

1 *
Pn = iV Z ]l(:um,k: > &fin).
k=1

We assume that £ is a constant 0 < £ < 1. (The test is more powerful when £ is
close to unity.) 1(-) is a unit indicator function.
(5) If p, > a accept Hy. Otherwise reject Hy in favor of Hj.

LFor simplicity, m ~ log(n) will be assumed further in the analysis. A more general outcome is shown in appendix

A.
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The intuition of the method is as follows: if the first moment exists, both the arithmetic
average of the sample and sub-samples uniformly converge to the theoretical mean. So,
. will not be far from p,. Reducing the critical value u, multiplying it by &, 0 <
¢ < 1, increases the share of ., exceeding the critical value, and rules out possible
counterexamples with highly skewed probability functions. On the other hand, in the
absence of the first moment, under some additional conditions, u, expands to infinity with
probability one, as reported by Derman and Robins (1955). Thus, in setting m = o(n),
we may expect that in general u;, converges to infinity more slowly than u,. It may be
argued that pr, will “spin” around pu,, in any case, since p, is finite for each n < 0o, and
E*u}, = pn. But distributions with no finite mean usually exhibit a small number of very
large outliers, driving up the arithmetic average, so that it exceeds most observations.
Thus, with an increasing number of observations, the portion of observations above the
arithmetic average of the sample decreases and the probability of drawing them into a
sub-sample decreases. Hence, as a rule, if the distribution does not have a finite first
moment, the share of py, > u, decreases as n grows. This finding is expressed formally
in the following section.

First, observe what occurs when the first moment exists:

1m
Pr¥| — X* nl =
r (m; z>§u)

m—1
Pr* (X;;l > mépy, — Z Xf) &2y
i=1
PT‘(X >mép — (m — 1),u*m_1), as mn — oo.

Where p denotes a theoretical mean, the almost sure convergence in the bottom line
follows from Kolmogorov’s law of large numbers: p, == p, and the Glivenko-Cantelli
lemma: Pr* £2 Pr, when n — oo.

Pr(X > mué — (m — 1),u;‘n_1> L5 Pr(X > —00)=1, as m — oco. (1)

% a.s . s .
tr. 1 — i when m — oo following Kolmogorov’s law of large numbers. £ < 1 insures

that increasing m drives the expression mu& — (m — 1)u’,_; to —oo. Hence, probability

converges to unity, because of the properties of a cumulative probability function.

3. Consistency

Lemma 3.1: Suppose the existence of constants C, C > 0 and 5, 0 < B < 1, such
that F(x) <1-— % for large x. Then ¥ ~v > 3, Pr(u, > n?_l) =1 for sufficiently large
n.

Proof: The proof of this lemma follows directly from the proof of the theorem of Derman

and Robbins (1955). They found that y, <> oo if the right tail of a distribution is heavier
than the left. This lemma is an intermediate finding, shown to prove their theorem. O

Assumption 0 < £ < 1 is needed in equation (1). The following lemma, corollary and
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theorem are also valid for a larger range of £. However, to avoid misunderstandings we
suppose £ to be a constant 0 < £ < 1.

Lemma 3.2:  Supposing the existence of constants C,C>0andéd, § > 2, such that
F(z) >1—C/log’(x) for large . Then Pr (,un > Eexp(n)) = 0 for sufficiently large n.

Proof:

Pr(un > fexp(n)) < PT(iI:nlE.if(n X; > §exp(n)) =
1— (F(€exp(n))" <1— (1 - (nHCOgg)é)"

As n > max(2,—log¢), Bernoulli’s inequality may be applied:

1- (1 ¢ )” < Cn
(n+1log&)d/) — (n+log&)d’
With § > 2 the sum 5, . 1.¢ m is finite (easily verifiable with the integral test
for convergence). Therefore, the Borel-Cantelli lemma implies that Pr(u, > exp(n)) =

0 for sufficiently large n.
([

Corollary 3.3: Suppose that for large x, F(x) > 1 — C/log’(x) for some § > 2 and
C > 0. Then Pr*(u}, > £exp(m)) = 0 for sufficiently large m.
The corollary result derives from the fact that X7,..., X}, is a sub-sample taken from

X1, ..., X,,. We note that according to the Glivenko-Cantelli lemma Pr* 2% Pr as n —
00, the statement of the corollary follows from the proof of lemma 3.2.

Theorem 3.4: Suppose that the conditions of lemma 3.1 and lemma 3.2 are satisfied,
m < (% — 1) logn for some v, B <~y <1, then limy, ;00 Pr*(ps, > &pn) = 0.

Proof:

Pr (15, > €n) < Pr (il > €07 )

< Pr* (,uq*n > §expm).

The first inequality follows from lemma 3.1. The second inequality is a result of
1

1
fexpm) =0 as m — oo.

construction m < 1) logn. The corollary of lemma 3.2 implies that Pr* (an >

O

Theorem 3.4 shows that the test is consistent when the conditions of lemma 3.1 and
lemma 3.2 are satisfied. Consistency is found, therefore, for a very large set of probability
functions. However, these conditions do not apply to all cases of distributions without
a finite first moment. If the right tail behaves as 1 — 1/x for large x the first moment
does not exist, though the tail does not fulfil the assumption of lemma 3.1. Indeed, the
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test is not consistent for such distributions. For example, if the sample is drawn from
a standard Cauchy distribution, the arithmetic averages of sample and sub-samples all
have a standard Cauchy distribution as well. Hence, Pr (,u;‘n > € ,un), (where p, and p,
are calculated from positive values only), should not converge to zero. However, it may
still be greater than the level of significance.

The condition of lemma 3.2 also restricts the probability functions. Fortunately, this
condition is not necessary. If a distribution does not satisfy the condition of lemma 3.2,
then the condition of lemma 3.1 can be rewritten as F(x) < 1—1/logz” for large = and
some 3, B > 2. Correspondingly, the condition of lemma 3.2 can be extended to more
heavily-tailed distributions. Moreover, this expedient may be repeated telescopically.
This is a difficult procedure, but to illustrate its feasibility we show consistency for tails
heavier than F(z) = 1 — 1/logz® with 8 > 2.

Theorem 3.5: Suppose that there 3 such a constant C, and a positive integer r,
that F(x) = 1 — C/log...logz for large ©, 0 < & < 1, moreover, m =~ logn, then
N———

T
hmn,m—>oo PT‘*(/L;';,L > gUn) =0.
Proof: The proof of theorem 3.5 is presented in appendix B. O

Theorem 3.5 extends the set of functions restricted by the assumptions of statement 3.4.
It shows consistency for a different set of probability functions, which do not have a finite
first moment. However, it is still possible to construct a distribution with tails heavier
than F(x) > 1—1/(log...logz)°. But from the proof of lemma 3.2 it is intuitively clear

————

T
that consistency can be shown for an even larger set of probability functions when we
allow m to grow at a rate much slower than m =~ <% — 1) log n. This is taken into account

in appendix A, where we present a more general result. It is less intuitive, yet still simple
to apply, and we use it to prove theorem 3.5.

4. Monte-Carlo simulations, comparison with the Hill estimator

In this section Monte-Carlo simulations are performed to evaluate the efficacy of the
test. First, our test is compared with the Hill estimator for independent data. Then,
test performance is checked in a numerical experiment with dependent data. While test
consistency is evaluated for independent data only, the performance of the test using
dependent data is also interesting, as this is the case in most real applications. In the
numerical experiment with independent data, observations are drawn from log-logistic
distribution with the scale parameter normalised to unity and shape parameter values
equal to 0.5, 0.9, 1, 1.1 and 1.5 and for the absolute values of standard Cauchy distri-
bution. In cases of a Cauchy distribution and a log-logistic distribution with parameters
0.5, 0.9 or 1 the finite first moment does not exist. However, the Cauchy distribution and
the log-logistic distribution with parameter 1 do not fulfill the requirements of lemma
3.1 and lemma A.1 (in appendix A), so test behavior is of particular interest in this case.

Table 1 shows the share of Hy rejected by the bootstrap test. For comparison table 2
shows test performance based on the Hill estimator. The constant £ is equalised to 0.999.
The size of a bootstrap sample is approximately equal to 0.4 % log n, which corresponds
to the functional form for m used in lemma 3.2. The constant 0.4 is used to ensure that
sub-samples have had at least two observations for the smallest n used in simulations.
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Table 1. Bootstrap. Share Hy rejected

n 1(0.5) 1(0.9) U1) |Cauchy| 1(1.1) 1(1.5)

100 0.292  0.071  0.054 0.051 0.034  0.006
500 0.686  0.121  0.070 0.066 0.038  0.004
10°  0.764 0.130 0.072 0.071 0.039  0.003
10* 0999 0.193 0.086 0.082 0.033  0.001
10° 1 0.317  0.096 0.100 0.032 0

Table 2. Hill estimator. Share Ho rejected

n 11(0.5) 1(0.9) UQ) |Cauchy| 1(1.1) 1(1.5)

100  0.549 0 0 0
500 0.944  0.004 0 0
10 0.989  0.020 0.001 0

10* 1 0.128  0.007 0.006
10° 1 0.466  0.013 0.012

OO O oOo
OO O OO

The number of observations used for the Hill parameter estimation is approximately
equal to n'/2.

10000 Monte-Carlo simulations were performed. As regards the bootstrap, the null
hypothesis is rejected when the estimated p,, is smaller than 0.05. In the case of the Hill
estimator the confidence interval can be constructed for 1/« value, where « is a tail index,
using asymptotic normality associated with some additional assumptions (see Haeusler
and Teugels (1985)). However, the confidence interval for a would be biased in this case.
To improve test performance we constructed a confidence interval [& — 26 (&), &+ 26 (&)],
where the standard deviation (&) is estimated from the simulated &. We rejected the
null hypothesis when the confidence interval did not intersect with the region (1,00),
where the null hypothesis is valid.

Simulations were performed for n = 100, 500, 103, 10%, 10°. The number of bootstrap
sub-samples was 10000.

Tables 1 and 2 show that the test based on the Hill estimator performed better for
very heavy tails i.e. a log-logistic distribution with the 0.5 shape parameter, but in the
borderline cases (Cauchy and log-logistic with the shape parameter 1), it rarely rejected
the null hypothesis because the estimate of the index tail in these cases is usually close
to 1. Thus, the confidence interval very often intersects with the region in which the
distributions have a finite first moment. In these cases the bootstrap test performed
better: its rejection rate being greater than the significance level in all cases.

As expected, the test based on the Hill estimator classified all distributions correctly
when observations were drawn from those distributions with finite first moments. The
bootstrap test made few mistakes - the error rate was very low - well below the level of
significance. We should note that the rate of first order mistakes does not approach the
significance level even asymptotically, indicating that the test proposed in this paper is
not exact.

Tables 3 and 4 compare our test with the Hill estimator in cases of serially dependent
data. The data are constructed as follows: The first observation was made from log-
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Table 3. Bootstrap. Share Hy rejected. Dependent data

n 1(0.5) 1(0.9) U1) |Cauchy| 1(1.1) 1(1.5)

100 0.300  0.070  0.052 0.049 0.034  0.007
500 0.692  0.121  0.072 0.069 0.043  0.005
10°  0.751  0.127 0.074 0.070 0.039  0.004
10* 0999 0198 0.075 0.087 0.036  0.001
10° 1 0.319  0.099 0.096 0.032 0

Table 4. Hill estimator. Share Hy rejected. Dependent data

n 11(0.5) 1(0.9) UQ1) |Cauchy| U(1.1) 1(1.5)

100  0.578 0 0 0 0 0
500  0.947  0.005 0 0 0 0
10°  0.993  0.020 0 0 0 0
10* 1 0.143  0.008 0.006 0 0
10° 1 0.465 0.010 0.009 0 0

logistic or Cauchy distributions with scale parameter equal to unity - as was done for
independent data. If the observation was smaller than unity, the next observation was
taken from the distribution, again with the same parameters. If not smaller, the next
observation was made from the distribution with scale parameter equal to 10, with other
parameters remaining unchanged. Next, new observations were compared to unity and
it was then determined from which distribution the next observation should be taken
in the same way. The procedure continued until an adequate sample was compiled. The
tests performed similarly, both with serially dependent data and with independent data,
which indicates a degree of test robustness in accordance with our assumption.
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Appendix A. Consistency in a general case

Suppose a sample is drawn from a distribution F(x) = 1 — 1/f(z), where f(z) is a
nondecreasing function, such that F() is well defined. m = m(n) is an increasing function
such that m(n) — oo, m(n) = o(n) as n — co. Furthermore, an inverse function m~!()
exists.

Lemma A.1: If such increasing functions exist g(n) and m(n), that f(ng(n)) < n’
and f(€g(m~t(n))) > nY for largen, and 0 <6 < 1,0 < £ <1, v > 2, then Pr*(us, >
Eun) = 0 for sufficiently large n.

Proof':

Pr(un < g(n)) = P’r(iXi < ng(n)) <

i=1
Pr(mazi=1 ,X; <ng(n)) =

Fingo)) = (1- f(;(n))) <

1 n
(L) oser
n

The last inequality holds for large n only, say n > n. For § in 0 < § < 1, >.°% (1 —

- n>n
1/n%)" < co. The sum " (1—1/f(g(n)))" is also finite, hence, Borel - Cantelli lemma
implies that for sufficiently large n Pr(u, < g(n)) = 0. Therefore, Pr(u, > g(n)) =1 if
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n is sufficiently large.

Pr (un > §g(m_1(n))) < Pr (mawizlnnXi > {g(m_l(n))) <

1 — Feg(m™" (n))" = 1 - (1 -

f(&g(m=1(n)))

The last inequality is valid for sufficiently large n, so if v > 2, the series is summable.
Thus the Borel-Cantelli lemma implies that Pr(u, > £g(m~"(n))) = 0 as n is sufficiently
large. Applying Glivenko-Cantelli lemma we obtain Pr* (,u,";b > {g(ﬁfl(m))) =0asm
is sufficiently large. Thus

Pr(py, > Epn) < Pr(u, > £g(n))
= Pr*(up, > &g(m ™" (m))) =0

for sufficiently large n.

Appendix B. Proof of theorem 3.5

Proof: Apply lemma A.1. In this case, function f(n) = log...logn /C with a positive
—_————

r

integer 7. If we take g(n) = (exp ...expn’) /n the condition f(ng(n)) < nd for 0 <é <1
—_———

s
is satisfied with equality by construction. m(n) = log(n), hence, m~!(m) =~ exp(m).

lim ~
n—oo nYy
r—1 r
—— ——
. log...log(logé —logn + &xp ... exp n®)
lim =
n— 00 cnv

The result is due to one extra exponent in the nominator, arising from m~! ~ expn.

Thus, the condition that f(gg(ﬁfl(n))) >n7, v > 2 is satisfied for large n. Therefore,
the theorem is proved. O



