# A large scale OLG model for France, Italy and Sweden: assessing the interpersonal and intrapersonal redistributive effects of public policies

Bucciol, A. Cavalli, L., Fedotenkov, I., Pertile, P., Polin, V., Sommacal, A., Sartor, N.

University of Verona-Department of Economics

Bank of Lithuania

03-07-2014

# What kind of model do we need to assess the redistributive effects of public policies?

We think that a model aimed at studying the redistributive effects of public policies should strike a balance between the following modeling features:

- Households as the units of analysis;
- a life cycle dimension;
- a sizeable degree of inter and intragenerational heterogeneity;
- a large number of public policies;
- "structural" behavioral responses.



#### The model: basic structure

- (Small open or closed) economy populated by  $\overline{J}$  overlapping generations.
- $j = \{1, 2, ..., j^R, ..., \overline{J}\}$  the age of an individual; where:
  - $j^R$  = exogenous retirement age;
  - $\overline{J}$  maximum age; Individuals may die before  $\overline{J}$  (survival probability).

#### The model: basic structure (continued)

- Intragenerational heterogeneity along the following dimensions:
  - gender: male and female
  - marital status: singles and married agents
    - Couples are comprised by individuals of the same age
    - Marital status is "constant" along the life cycle
  - presence of children:
    - o zero or two
    - in period j = 1 and for couples only
  - educational level: with and without a high degree;
  - productivity level.

### The model: basic structure (continued)

- The decisional unit is the household:
  - A single individual maximizes his/her intertemporal utility
  - Individuals within a couple pool together their resources and maximize the sum of their intertemporal utilities (with equal weights).
  - Control variables: consumption and labor supply

Single agent:  $\max_{c_j^g, z_j^g} u(c_j^g, z_j^g) + \psi_{j+1}(g)\beta V^g(x_{j+1}^g)$ . Couples:

$$\max_{c_{j}^{m},c_{j}^{f},z_{j}^{m},z_{j}^{f}} \left\{ u(c_{j}^{m},z_{j}^{m}) + u(c_{j}^{f},z_{j}^{f}) + \psi_{j+1}(m)\beta \left( \psi_{j+1}(f)V^{m}(x_{j+1}^{co}) + (1 - \psi_{j+1}(f))V^{m}(x_{j+1}^{m}) \right) + \psi_{j+1}(f)\beta \left( \psi_{j+1}(m)V^{f}(x_{j+1}^{co}) + (1 - \psi_{j+1}(m))V^{f}(x_{j+1}^{f}) \right) \right\}$$

- $\mathbf{c}_{j}^{g}$  Consumption;
- $z_i^g$  Leisure;
- V<sup>g</sup> Value function;
- $\mathbf{x}_{i+1}^g$  State vector.
- $\psi_{i+1}(g)$  Survival probability.



#### The model: public policies

- We model the main institutional features of the following set of public policies:
  - Personal income tax
  - Capital income tax
  - Commodity tax
  - Pension system
  - Child care subsidies
  - Child benefit
  - Health subsidies

## Budget constraint

$$\begin{aligned} a_{j+1} &= (1 + (1 - \tau_r)r)a_j + I_m(g) \big( (1 - \tau_{ss})Y_j^m - T_j^m - \bar{H}_j^m + H_j^m \big) + \\ &I_f(g) \big( (1 - \tau_{ss})Y_j^f - T_j^f - \bar{H}_j^f + H_j^f \big) + \\ &ANF_j - p_d(1 - \tau_d)d - (1 + \tau_q)q + TR_j. \end{aligned}$$

- a<sub>i</sub> Assets
- $Y_i^g$  Income (wage or pensions)
- $T_i^g$  Income taxes
- $\blacksquare \bar{H}_i^g$  Health expenditures
- $\blacksquare$   $H_i^g$  Health subsidies
- ANF<sub>i</sub> Child subsidy
- p<sub>d</sub> price of non-parental daycare
- q Consumption
- TR<sub>i</sub> Transfers



#### Pension system

$$\text{Young: } \textit{sc}_{j+1}^{\textit{g}} = (1 + r^{\textit{ss}})(\textit{sc}_{j}^{\textit{g}} + \tau^{\textit{ss}}\textit{e}_{j,h}^{\textit{g}}\textit{wl}_{j}^{\textit{g}}).$$

Old: 
$$P = \frac{sc_{JR}}{\sum_{j=jR}^{J} \frac{\prod_{s=jR}^{j} \psi_{s}^{g}}{(1+rss)^{j}-jR}}$$
.

- sc<sup>g</sup> Amount of social contributions.
- P Pensions.
- w Wage rate per efficiency unit.
- $e_{i,h}^g$  Efficiency units.
- $I_i^g$  Labour supply.
- $\psi_{j+1}(g)$  Survival probability.

#### Policy experiments: an example

- We study the effects of a shift from the current progressive PIT to a proportional income tax (keeping revenues constant) This a "prototypal" computational experiment: already done in the literature for the USA using large scale OLG models.
- We study the redistributive effects of this reform looking at:
  - the percentage of individuals who are worse off after the reform: 42%
  - the compensating variation (CV) for each type of household:
     CV= % of additional money an agent shall pay to reach its initial utility after a change in prices after the policy reform
  - Other

### Policy experiments: an example (continued)

Table: Compensating variations: couples

|                                     | Туре      |           |           |           |
|-------------------------------------|-----------|-----------|-----------|-----------|
|                                     | Male: L   | Male: H   | Male: L   | Male: H   |
|                                     | Female: L | Female: L | Female: H | Female: H |
| Male: nd, Female: nd, Children: yes | -0.08     | 0.15      | -0.03     | 0.21      |
| Male: nd, Female: nd, Children: no  | -0.04     | 0.17      | -0.08     | 0.24      |
| Male: ud, Female: nd, Children: yes | -0.04     | 0.24      | 0.05      | 0.33      |
| Male: ud, Female: nd, Children: no  | 0.00      | 0.27      | 0.08      | 0.35      |
| Male: nd, Female: ud, Children: yes | -0.06     | 0.21      | 0.22      | 0.17      |
| Male: nd, Female: ud, Children: no  | -0.01     | 0.23      | 0.25      | 0.19      |
| Male: ud, Female: ud, Children: yes | -0.04     | 0.26      | 0.20      | 0.30      |
| Male: ud, Female: ud, Children: no  | 0.01      | 0.29      | 0.23      | 0.32      |

#### Conclusion

- OLG model(⇒ life cycle dimension and "structural" behavioral responses), calibrated on Italian data, with: a sizeable degree of inter and intragenerational heterogeneity; a large number of public policies; the household as the unit of analysis.
- The model can be used to simulate a wide range of policy experiments